Reversing defaunation by trophic rewilding in empty forests

Mauro Galetti1,2,6, Alexandra S. Pires3, Pedro H.S. Brancalion4, and Fernando A.S. Fernandez5

1 Departamento de Ecologia, Universidade Estadual Paulista (UNESP), 13506-900 Rio Claro, São Paulo, Brazil
2 Department of Bioscience – Ecoinformatics and Biodiversity, Aarhus University, Ny Munkegade 116, Building 1540, 318, 8000 Aarhus, Denmark
3 Departamento de Ciências Ambientais, Universidade Federal Rural do Rio de Janeiro, 23890-000 Seropédica, Brazil
4 Departamento de Ciências Florestais, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo (USP), 13418-900 Piracicaba, São Paulo, Brazil
5 Departamento de Ecologia, Universidade Federal do Rio de Janeiro, CP 68020, 21941-590 Rio de Janeiro, Brazil

ABSTRACT

Defaunation has a major driver of biodiversity loss in tropical forests. Here we discuss how to reverse defaunation by re-introducing key species in defaunated or restored forests.

Key words: Atlantic forest; climate change; defaunation; howler monkeys; reintroduction; tortoise.

Defaunation, the global, local or functional extinction of animal populations or species, has become one of the ubiquitous drivers of biodiversity loss in the Anthropocene (Dirzo et al. 2014). Tropical ecosystems are increasingly affected by defaunation, particularly of large vertebrates (Peres & Palacios 2007, Corlett 2013) leading to severe ecological disruptions and to the loss of important ecosystem processes and services (Effiom et al. 2013, Kurten 2013, Bello et al. 2015). While the proportion of ‘empty forests’ continues to increase in the tropics, ‘rewilding’ projects, including the reintroduction of formerly extinct species, continue to attract much debate and attention (Seddon et al. 2014, Svenning et al. 2016).

The idea of rewilding has faced much controversy primarily because of early focus on the goal of recovering Pleistocene ecosystems. Pleistocene rewilding as first proposed by Galetti (2004) for tropical savannas in South America and Zimov (2005) for steppe ecosystems were thought as experimental fenced parks (the so-called ‘Pleistocene parks’) to test the role of megafauna in key ecological processes such as herbivory and seed dispersal. In fact, both authors never mentioned the term ‘rewilding’ that was first proposed by Soulé and Noss (1998) for restoring only top predators in North American landscape. The term ‘rewilding’ did not get much attention until Donlan et al. (2005) popularized the controversial idea of introducing ecological/phylogenetic analogues of extinct Pleistocene megafauna to North American ecosystems. Thus, the idea of rewilding was first met by strong rejection by the scientific community because it was linked to the idea of introducing exotic species such as lions, cheetahs, elephants, and camels to replace the function of extinct Pleistocene megafauna in natural ecosystems (Rubenstein et al. 2006, Caro 2007, Oliveira-Santos & Fernandez 2010, Rubenstein & Rubenstein 2016). Although no introduction of elephants or lions was actually attempted in the Americas, every now and then there are still papers heating this debate (Nogués-Bravo et al. 2016).

While there is a general consensus that restoring the ecological functions lost from natural ecosystems is vital for maintaining self-regulated ecosystems (Seddon et al. 2014), there is no consensus if the ecological function of extinct Pleistocene species should or even can be replaced by living species under our current climate scenario (Richmond et al. 2010).

A less radical type of rewilding is the reintroduction of living species that have been recently lost from their habitat. This strategy can be particularly important in forests undergoing restoration. For example, as tree plantations in former agricultural lands embedded in highly modified landscapes that hamper natural faunal recolonization (Rodrigues et al. 2011). In the lack of active reintroductions of some groups of native animals, plant species may not be able to persist due to limitations in key ecological interactions (Hobbs & Cramer 2008).

Here, we discuss ‘rewilding’ (sensu Svenning et al. 2016) via species reintroductions as a strategy for restoring ecological processes in defaunated or planted forest patches. Trophic rewilding has the goal of restoring trophic interactions to achieve self-regulating ecosystems (Svenning et al. 2016). Focusing on the reintroduction of locally extinct species is less radical and may prove less ecologically and socially contentious than Pleistocene rewilding.

Reintroduction of formerly extinct species is less radical and may prove less ecologically and socially contentious than Pleistocene rewilding.
South America, a biodiversity hotspot (Myers et al. 2000) where ~12 percent of the original forest is left, mostly in small (<50 ha) forest patches (Ribeiro et al. 2009). Fragmentation has been a major driver of defaunation in the Atlantic Forest, as an abrupt decline of vertebrate community integrity has been observed in landscapes with less than 30 percent habitat cover remaining (Banks-Leite et al. 2014), and six of the seven biogeographical regions of the biome have less than half of this threshold (Ribeiro et al. 2009). In addition to heavy fragmentation, hunting has decimated most of the mammalian fauna even in large forest remnants (Galetti et al. 2009, Jorge et al. 2013).

Forest restoration is then necessary to further mitigate species extinction in this biome, while providing new habitat for reintroducing those species locally extinct by both fragmentation or hunting (e.g., Bernardo 2012). Ambitious forest restoration programs have thus been established. For instance, The Atlantic Forest Restoration Pact, a coalition of more than 250 institutions including governments, NGOs, private companies and academia, launched the goal to restore 15 million ha by 2050 (Melo et al. 2013). Following this call, and the legal requirements to restore over 20 million ha of native ecosystems in private farms to comply with the Forest Code (Soares-Filho et al. 2014), many large-scale forest restoration projects have been implemented across the Atlantic Forest and mobilized an unprecedented amount of resources to reestablish highly diverse tropical forests in agricultural landscapes (Rodrigues et al. 2011, Latawiec et al. 2015).

Most restoration projects consider that once a forest type is established, preferably with a large array of native species, the area will gradually be colonized by new species, including fauna. This hypothesis has been called as the ‘field of dreams’ myth: ‘build it and they will come’ (Hilderbrand et al. 2005). However, it is not the case for the Atlantic Forest, where key large-bodied species are no longer found in forest remnants (Jorge et al. 2013), so they would not be able to colonize adjacent restoration sites, which further compromises the self-sustainability of the restored community. While small to medium-sized birds have been found in restoration sites, large-bodied birds are absent (Silva et al. 2015). Thus, there remains an urgent need to reverse defaunation in order to re-establish important ecological (Brodie & Aslan 2012, Seddon et al. 2014) and evolutionary processes (Galetti et al. 2013).

The best candidate species for trophic rewilding projects would have to fulfill the following criteria: (1) species that have suitable captive stocks, either in zoos, wild animals screening centers or private captive breeding; (2) species that are habitat generalists but provide an unique ecological service that is absent in most restored or remnant defaunated forests; (3) species which do not represent a high health and economic risk to humans (e.g., top predators, disease vectors, agricultural pests); (4) species that can be easily managed if they reach high abundances; and (5) species with small home ranges. The ideal sites for refaunation include: (1) areas where the impact of hunting and domestic dogs or other invasive species is minor; (2) landscapes with habitat large enough to maintain a minimum sustainable population size; (3) forest patches with sufficient resources to support the populations of reintroduced species.

<table>
<thead>
<tr>
<th>Group</th>
<th>Refaunation candidates</th>
<th>Common name</th>
<th>Home range (ha)</th>
<th>Ecological/ economical risks</th>
<th>Ecological benefits</th>
<th>Failure causes</th>
<th>Reintroduction sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammal</td>
<td><em>Agouti paca</em></td>
<td>Paca</td>
<td>1.5–3.5</td>
<td>Overbrowsing, seed predation</td>
<td>Seed predation</td>
<td>Hunting, predation by domestic dogs</td>
<td>1</td>
</tr>
<tr>
<td>Mammal</td>
<td><em>A. wynncilla</em></td>
<td>Howler monkey</td>
<td>0.4–1.1</td>
<td>None</td>
<td>Seed dispersal, nutrient cycling</td>
<td>Loss of group cohesion, dog predation</td>
<td>1</td>
</tr>
<tr>
<td>Mammal</td>
<td><em>Bradypus spp.</em></td>
<td>Sloth</td>
<td>2.8–5.9</td>
<td>None</td>
<td>Nutrient cycling</td>
<td>Pet trade</td>
<td>1</td>
</tr>
<tr>
<td>Reptile</td>
<td><em>C.+carbonarius</em></td>
<td>Tortoise</td>
<td>0.6–600</td>
<td>None</td>
<td>Seed dispersal of large seeded plants</td>
<td>Pet trade</td>
<td>1</td>
</tr>
<tr>
<td>Bird</td>
<td><em>Crac/ Pingu/ Pipilo</em></td>
<td>Cracids</td>
<td>150–200</td>
<td>None</td>
<td>Seed dispersal</td>
<td>Hunting, predation by domestic dogs</td>
<td>1</td>
</tr>
<tr>
<td>Mammal</td>
<td><em>Dasyprocta spp.</em></td>
<td>Agouti</td>
<td>3.0–8.5</td>
<td>Overbrowsing, seed predation</td>
<td>Seed dispersal of large seeded plants</td>
<td>Hunting, predation by domestic dogs</td>
<td>1</td>
</tr>
<tr>
<td>Mammal</td>
<td><em>T. terrestris</em></td>
<td>Tapir</td>
<td>190–302</td>
<td>Crop raiding</td>
<td>Seed dispersal of large seeded plants</td>
<td>Hunting, predation by domestic dogs</td>
<td>1</td>
</tr>
<tr>
<td>Bird</td>
<td><em>T. solitarius</em></td>
<td>Tinamou</td>
<td>Unavailable</td>
<td>None</td>
<td>Seed predation</td>
<td>Hunting, predation by domestic dogs</td>
<td>1</td>
</tr>
<tr>
<td>Mammal</td>
<td><em>P. taquetus</em></td>
<td>Collared peccary</td>
<td>123–305</td>
<td>Crop raiding</td>
<td>Seed predation, soil engineering</td>
<td>Hunting, predation by domestic dogs</td>
<td>2</td>
</tr>
<tr>
<td>Bird</td>
<td><em>R. montagui</em></td>
<td>Toucan, toucanets</td>
<td>86–191</td>
<td>Increase in nest predation</td>
<td>Seed dispersal of large seeded plants</td>
<td>Pet trade, Hunting</td>
<td>2</td>
</tr>
<tr>
<td>Mammal</td>
<td><em>L. sp.</em></td>
<td>Ocelot, margay</td>
<td>319–3710</td>
<td>Poultry predation</td>
<td>Top predator</td>
<td>Hunting, predation by domestic dogs</td>
<td>3</td>
</tr>
</tbody>
</table>
The sets of species fulfilling these criteria vary among regions, and must be sorted out regionally. Here, we suggest a list of potential candidates for trophic rewilding for Atlantic Forest (Table 1; Fig. 1), but other authors have been discussing for other ecosystems (Louys et al. 2014, Sandom et al. 2013, Corlett 2016). For each species, the expected ecological benefits must be weighed locally against the ecological and economic risks and the chances of failure, but continuous monitoring is necessary. In addition, just as in restoring plant communities, there should be suitable sequences for inserting species. For example, generalists of the lower trophic levels should be reintroduced first, followed by more specialist species, which would benefit from a richer trophic web. Finally, apex predators should be inserted only after their prey populations have been safely established (Table 1).

Trophic rewilding programs are already taking place in a few defaunated rainforests. For instance, in Tijuca National Park in Rio has already reintroduced agoutis (Dasyprocta leporina) and howler monkeys (Alouatta clamitans) (Cid et al. 2014). In this forest patch of about 4000 ha, 23 large seeded tree species rely on scatter hoarding rodents and the introduction of agoutis has resurrected this extinct plant-animal interaction (Zucaratto & Pires 2015). In restored forests we still lack examples of trophic rewilding but this is an open opportunity for collaboration between wildlife managers and forestry ecologists. If well managed, small forest fragments and restored forest can become important for maintaining important ecosystem services.

Trophic rewilding programs have usually attracted high interest, support and enthusiasm from the local people and will be an essential management tool for the success of forest restoration projects and they are certainly more feasible, controlled and accepted than Pleistocene rewilding projects. Although more empirical data is necessary to fully understand how to reestablish extinct ecological interactions, it will be an important alternative to reverse defaunation in tropical ecosystems and its consequences for vital ecosystem services.

ACKNOWLEDGMENTS

We thank all the people involved in the refaunation program at TNP, especially Bruno Cid, Caio Kenup, Luísa Genes, and Marcelo Rheingantz. Maron Galliez and Adrien Monjeau provided discussions. We also thank TNP through Ernesto Viveiros de Castro and Katyucha Von Kossel, Fundação Rio Zoo, Fundação Parques e Jardins and Centro de Primatologia do Rio de Janeiro.
Financial support was provided by CNPq, Fundação Grupo Boticário de Proteção à Natureza and FAPERJ, MG, FAS and A. S. Pires receive fellowships from CNPq. A. Dunham and E. Bruna for critical comments on the manuscript.

LITERATURE CITED


